60 research outputs found

    Searching for Heavier Higgs Boson via Di-Higgs Production at LHC Run-2

    Get PDF
    The LHC discovery of a light Higgs particle h0h^0 (125GeV) opens up new prospect for searching heavier Higgs boson(s) at the LHC Run-2, which will unambiguously point to new physics beyond the standard model (SM). We study the detection of a heavier neutral Higgs boson H0H^0 via di-Higgs production channel at the LHC (14TeV), H0h0h0WWγγH^0 \to h^0h^0 \to WW^*\gamma\gamma. This directly probes the HhhHhh cubic Higgs interaction, which exists in most extensions of the SM Higgs sector. For the decay products of final states WWWW^*, we include both pure leptonic mode WWνˉˉνWW^* \to \ell\bar{\nu}\bar{\ell}\nu and semi-leptonic mode WWqqˉνWW^* \to q\bar{q}'\ell\nu. We analyze signals and backgrounds by performing fast detector simulation for the full processes ppHhhWWγγνˉˉνγγpp \to H \to hh \to WW^*\gamma\gamma \to \ell\bar{\nu}\bar{\ell}\nu\gamma\gamma and ppHhhWWγγνqqˉγγpp \to H \to hh \to WW^*\gamma\gamma \to \ell\nu q\bar{q}'\gamma\gamma, over the mass range MH=250600M_H=250-600GeV. For generic two-Higgs-doublet models (2HDM), we present the discovery reach of the heavier Higgs boson at the LHC Run-2, and compare it with the current Higgs global fit of the 2HDM parameter space.Comment: Phys.Lett.B Final Version. 16pp (9 Figs + 4 Tables). Only minor refinements, references adde

    Memory-Gated Recurrent Networks

    Full text link
    The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.Comment: This paper was accepted and will be published in the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21

    Top quark mass measurements at the ttˉt\bar{t} threshold with CEPC

    Full text link
    We present a study of top quark mass measurements at the ttˉt\bar{t} threshold based on CEPC. A centre-of-mass energy scan near two times of the top mass is performed and the measurement precision of top quark mass, width and αS\alpha_S are evaluated using the ttˉt\bar{t} production rates. Realistic scan strategies at the threshold are discussed to maximise the sensitivity to the measurement of the top quark properties individually and simultaneously in the CEPC scenarios assuming a limited total luminosity of 100 fb1^{-1}. With the optimal scan for individual property measurements, the top quark mass precision is expected to be 9 MeV, the top quark width precision is expected to be 26 MeV, and αS\alpha_S can be measured at a precision of 0.00039. Taking into account the uncertainties from theory, background subtraction, beam energy and luminosity spectrum, the top quark mass can be measured at a precision of 14 MeV optimistically and 34 MeV conservatively at CEPC

    Sustainable and scalable in-situ synthesis of hydrochar-wrapped Ti3AlC2-derived nanofibers as adsorbents to remove heavy metals

    Get PDF
    To ensure a sustainable future, it is imperative to efficiently utilize abundant biomass to produce such as platform chemicals, transport fuels, and other raw materials; hydrochar is one of the promising candidates derived by hydrothermal carbonization of biomass in pressurized hot water. The synthesis of “hydrochar-wrapped Ti3AlC2-derived nanofibers” was successfully achieved by a facile one-pot hydrothermal reaction using glucose as the hydrochar precursor. Meanwhile, cellulose and pinewood sawdust as raw materials were also investigated. Products were characterized by XRD, N2 adsorption-desorption isotherms, SEM, TEM and FT-IR to investigate their crystal structures, textural properties, morphologies, and surface species. In the adsorption test to remove Cd(II) and Cu(II) in aqueous solution, hydrochar-wrapped nanofibers outperformed pure nanofibers derived from Ti3AlC2, hydrothermal carbon derived from glucose and commercial activated carbon. Finally, the regeneration, sorption kinetics, and possible adsorption mechanism were also explored

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Precision Higgs physics at the CEPC

    Get PDF
    The discovery of the Higgs boson with its mass around 125 GeV by the ATLAS and CMS Collaborations marked the beginning of a new era in high energy physics. The Higgs boson will be the subject of extensive studies of the ongoing LHC program. At the same time, lepton collider based Higgs factories have been proposed as a possible next step beyond the LHC, with its main goal to precisely measure the properties of the Higgs boson and probe potential new physics associated with the Higgs boson. The Circular Electron Positron Collider~(CEPC) is one of such proposed Higgs factories. The CEPC is an e+ee^+e^- circular collider proposed by and to be hosted in China. Located in a tunnel of approximately 100~km in circumference, it will operate at a center-of-mass energy of 240~GeV as the Higgs factory. In this paper, we present the first estimates on the precision of the Higgs boson property measurements achievable at the CEPC and discuss implications of these measurements.Comment: 46 pages, 37 figure

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    corecore